Mismatch repair protein hMSH2-hMSH6 recognizes mismatches and forms sliding clamps within a D-loop recombination intermediate.

نویسندگان

  • Masayoshi Honda
  • Yusuke Okuno
  • Sarah R Hengel
  • Juana V Martín-López
  • Christopher P Cook
  • Ravindra Amunugama
  • Randal J Soukup
  • Shyamal Subramanyam
  • Richard Fishel
  • Maria Spies
چکیده

High fidelity homologous DNA recombination depends on mismatch repair (MMR), which antagonizes recombination between divergent sequences by rejecting heteroduplex DNA containing excessive nucleotide mismatches. The hMSH2-hMSH6 heterodimer is the first responder in postreplicative MMR and also plays a prominent role in heteroduplex rejection. Whether a similar molecular mechanism underlies its function in these two processes remains enigmatic. We have determined that hMSH2-hMSH6 efficiently recognizes mismatches within a D-loop recombination initiation intermediate. Mismatch recognition by hMSH2-hMSH6 is not abrogated by human replication protein A (HsRPA) bound to the displaced single-stranded DNA (ssDNA) or by HsRAD51. In addition, ATP-bound hMSH2-hMSH6 sliding clamps that are essential for downstream MMR processes are formed and constrained within the heteroduplex region of the D-loop. Moreover, the hMSH2-hMSH6 sliding clamps are stabilized on the D-loop by HsRPA bound to the displaced ssDNA. Our findings reveal similarities and differences in hMSH2-hMSH6 mismatch recognition and sliding-clamp formation between a D-loop recombination intermediate and linear duplex DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleosome remodeling by hMSH2-hMSH6.

DNA nucleotide mismatches and lesions arise on chromosomes that are a complex assortment of protein and DNA (chromatin). The fundamental unit of chromatin is a nucleosome that contains approximately 146 bp DNA wrapped around an H2A, H2B, H3, and H4 histone octamer. We demonstrate that the mismatch recognition heterodimer hMSH2-hMSH6 disassembles a nucleosome. Disassembly requires a mismatch tha...

متن کامل

The Bloom's syndrome helicase interacts directly with the human DNA mismatch repair protein hMSH6.

Bloom's syndrome (BS) is a rare genetic disorder characterised by genome instability and cancer susceptibility. BLM, the BS gene product, belongs to the highly-conserved RecQ family of DNA helicases. Although the exact function of BLM in human cells remains to be defined, it seems likely that BLM eliminates some form of homologous recombination (HR) intermediate that arises during DNA replicati...

متن کامل

hMSH2 and hMSH6 play distinct roles in mismatch binding and contribute differently to the ATPase activity of hMutSalpha.

In extracts of human cells, base-base mismatches and small insertion/deletion loops are bound primarily by hMutSalpha, a heterodimer of hMSH2 and hMSH6 (also known as GTBP or p160). Recombinant hMutSalpha bound a G/T mismatch-containing oligonucleotide with an apparent dissociation constant Kd = 2.6 nM, while its affinity for a homoduplex substrate was >20-fold lower. In the presence of ATP, hM...

متن کامل

Loss of hMSH2 and hMSH6 expression is frequent in sporadic endometrial carcinomas with microsatellite instability: a population-based study.

Microsatellite instability (MSI) seems to be important in the development of various human cancers including sporadic endometrial cancer. It has previously been shown that alterations in the mismatch repair gene hMLH1 seem to be important for the development of MSI in these tumors. The role of the other mismatch repair genes hMSH2 and hMSH6 has been less well studied, but investigations on pati...

متن کامل

DNA mismatch repair enzyme expression in synovial tissue.

BACKGROUND Oxidative stress in RA synovial tissue can cause DNA damage and suppress the DNA mismatch repair (MMR) system in cultured synoviocytes. This mechanism includes two enzyme complexes, hMutSalpha (hMSH2/hMSH6) and hMutSbeta (hMSH2/hMSH3). OBJECTIVE To examine the expression and distribution of MMR enzymes in synovial tissues from patients with arthritis and from normal subjects. MET...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 3  شماره 

صفحات  -

تاریخ انتشار 2014